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SUMMARY 
The recent interest in propeller noise generation, stimulated by development of new propeller types for 
commercial propjets, has generated a need for the ability to measure the noise characteristics of propellers. 
However, wind tunnel noise measurements are affected by reflections from the wind tunnel walls. Computer 
codes predicting the free-field noise of a propeller and its noise field in a circular wind tunnel allow validating 
the use of wind tunnel measurements to predict free-field noise characteristics. A wind tunnel contains flow 
which is uniform in the duct axial direction, but can vary in the radial direction. It can be shown that 
a third-order differential equation governs the acoustic pressure field for such a duct containing radially 
sheared subsonic flow. This third-order problem is then posed as a coupled pair of equations which are 
second-order in terms of acoustic density and first-order in terms of an artificial variable which represents 
the effects of the flow being sheared. It is shown that this form of the problem allows a natural extension of 
the existing numerical solution techniques for non-sheared flow. The sheared flow problem is presented, and 
a finite element method is developed to yield a solution for propeller-type acoustic forces. The finite element 
code and method are refined with numerical experiments, and results are presented for a specific propeller 
and duct geometry. Good agreement is shown between this method and an alternate approach to the 
sheared flow problem using a piecewise constant representation of the velocity in the boundary layer. This 
validates both the numerical methods. 

KEY WORDS Finite elements Aeroacoustics Propellers Sheared flow 

INTRODUCTION 

The acoustic radiation characteristics of a circular duct are of interest from the standpoint of 
assessing the effect a wind tunnel wall has on acoustic testing of propellers. Acoustic noise 
measurements of propellers are generally made in wind tunnels under simulated flight conditions. 
These measurements can be greatly affected by the presence of the tunnels walls, which reflect 
some of the incident sound. They also change the nature of the flow around the propeller from 
that of actual flight conditions by causing the velocity profile to be sheared, rather than be 
uniform. A circular duct, containing propeller-type acoustic sources and a unqorm velocity pro&", 
has been successfully modelled by Eversman and Baumeister' and Eversman2 using a finite 
element method to solve the governing second-order convected wave equation. That method 
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PROPELLER PLANE t 
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Figure 1. The circular duct domain with a cylindrical co-ordinate system 

initially modelled a duct with a hard wall' and, subsequently, a duct with an absorbing lining3 
When a sheared velocity profle is included, the governing wave equation becomes a third-order 
partial differential equation. A mixed finite element method is presented here which solves this 
wave equation for sheared flow by addressing it as a coupled pair of differential equations, one 
second-order, the other a first-order equation. 

Acoustic waves in air are considered to be of small density, and velocity perturbations on 
a known mean flow field. The duct is assumed to have a circular cross-section which is uniform in 
the axial direction. It contains a mean air flow which varies only in the radial direction and has no 
swirl. A representative duct fluid domain is shown in Figure 1. The problem is described by the 
usual compressible-fluids equations: conservation of mass, equation of state, conservation of 
momentum and a Stokes' law relationship. These equations can be combined and linearized to 
yield a third-order wave equation in terms of acoustic density alone. This has been amply 
demonstrated by Mohring in Reference 4. Thus, given the Mach number profile and the acoustic 
body force vector f; the acoustic density p is to be found as a function of time and cylindrical 
space-coordinates, such that 

and such that a boundary condition in terms of the acoustic admittance of the duct lining holds at 
the duct wall, and where 

D 
Dt 

The acoustic sources are assumed to be periodic in the time co-ordinate and in the cylindrical 
co-ordinate, 8, as is the case for propellers. Using a Gutin-type model, the propeller source 
functions and the acoustic density can be represented as Fourier series.536 Since this propeller 
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model is represented in the frequency domain, the governing equations are transformed to the 
frequency domain. Taking Fourier transforms with respect to time and the co-ordinate 8 gives the 
problem: given a Mach number profile M as a function of the axial co-ordinate, and an acoustic 
body force vector function { J;. }, having the Fourier transform {,in'"}, for each integer n, rn find 
b such that 

and such that 

where we have defined 

,. R 2xn 
k , = o , , :  and on=- 

C T 

and where T is the fundamental period of the source functions. Also the radial spatial co-ordinate 
r and the axial spatial co-ordinate z have been non-dimensionalized by the duct radius R to yield 
the co-ordinates x1 in the radial direction and x2 in the axial direction; the acoustic density and 
source terms have been non-dimensionalized by the mean acoustic density p ,  the duct radius R,  
and the mean speed of sound C. 

For uniform flow, dM/dx, =0, and th'e governing differential equation is the second-order 
equation enclosed by the first set of brackets of equation (2). This problem has been successfully 
solved by Eversman and Baumeinterl using a finite element method. This finite element method, 
developed by Eversman for uniform flow, is used here as a basis upon which a finite element 
method is constructed to solve the sheared flow problem. Toward this end, the third-order 
differential equation ( 2 )  is written as two coupled equations: one second-order in terms of acoustic 
density and one first-order in terms of a new variable 'd', which is defined to be equal to the 
second-order terms inside the first set of brackets of equation (2). The problem obtained is: find 
,? and d such that 

and 

and such that 

a i M d  ' -  
-b=- ik ,  1-,- A $  ( a t x I = l ) .  
ax 1 ' * ( k, 8x2) 

The new variable, d,  represents the effects of the shear layer since d = O  when the Mach number, 
M ,  is constant. 
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A FINITE ELEMENT METHOD 

A finite element method'.' is developed which solves the problem of equations (4) and (5 )  for an 
arbitrary acoustic source distribution in a duct with hard walls. For a hard-walled duct, the 
acoustic admittance A is simplifying the boundary condition at the wall. For a soft- 
walled duct, the boundary term in the above equation is implemented in the finite element 
formulation, but for the purposes of clarity, only a hard-walled duct is considered in the 
remainder of this paper. Following the work of Eversman and Baumeinter' for the second-order 
equation, the infinite circular duct domain is truncated at x2 = k L, giving the finite domain 
Q12 of Figure 2. The acoustic sources are assumed to be zero everywhere except in a region 'near' 
the axis x2 =O. Then as L becomes large, the solution to the forced problem at the ends of the duct 
(x2 = k L )  approaches a solution to the homogeneous or unforced problem. This gives a bound- 
ary condition to be imposed on the finite domain at x2 = 2 L. The solution of the forced problem 
must match the form of the general homogeneous (eigenvalue) solution to the unforced problem 
at the ends of the duct." A specific homogenious solution is specified by the selection of values for 
the constants a[ and bl in the expressions 

1 
I - 

d h ( x I ,  x2)= C b l D l ( x l )  e-iK1k;rXZ, 
all 1 

where K l  are the eigenvalues of the unforced problem, and PI  and Dl are the eigenfunctions. 
Posing the problem now in the L; integral, or weakened sense, integrating by parts and applying 
the boundary conditions gives the following problem in terms of integral operators 4 and b. Let 

Figure 2. The finite problem domain after Fourier decomposition, showing a sheared flow in one-fifth of the duct near the 
wall 
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4 and b be defined as 

Cip dh 
h + (1 - M ') - - ax2 ax2 

We have the following weak problem: given Mach number M as a function of x1 and { f l m }  
asFourier coefficients of { . f i } ,  for each n, m, find J = ( p ,  A + ,  A-. d ) e P  x E +  x E -  x D such that 

4(P, Q=b(L) (9) 

for all weight functions A=(h, S + ,  S - ,  ~ ) E H  x E +  x E -  x G where E +  and E -  are function spaces 
containing all solutions to the unforced homogeneous (eigenvalue) problem at respective ends of 
the duct, P and H are function spaces which are collections of all functions on the domain 
fi,2 with integrable derivatives, D and G are collections of all functions on nl2 which are 
integrable and have integrable first-order derivatives with respect to x 2 .  This problem is now 
a weaker formulation of the original problem, as only one derivative of the acoustic density p is 
required to exist and be integrable. 

The problem of equation (9) is solved using a finite element t e c h n i q ~ e ~ . ~ . ~ ~  which involves 
constructing approximations to the solution spaces and weight function spaces of problem (9). 
These spaces are constructed by dividing the problem domain into a finite number of subdo- 
mains, or elements. Then, on each element, a typical function belonging to the space is approxim- 
ated by a polynomial curve fit. The functions spaces associated with the boundary conditions at 
the ends of the duct are approximated by using a finite number of the terms in the sum 
representing the homogeneous solution. If Ph, Dh,  H,, and Gh are function spaces (sets containing 
functions) which are finite element approximations (polynomials on each element) to  the 
functions in the exact spaces P, D, H ,  and G, then an approximate problem can be written as 
equation (9) with the exact solution and weight spaces replaced by the approximate spaces. 

For each n, m, find a solution p belonging to the set Ph of continuous functions approximated 
on an element by a biquadratic polynomial, and find d belonging to the set Dh of functions 
approximated on an element by a bilinear polynomial and continuous in the x2 direction, and A' 
and A -  as truncated homogeneous solutions at each end of the duct such that 

(10) (PC(p,A+, A - ,  4, (A, S+, S-, g) l=bC(h,  S', S - ,  dl 
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for all arbitrary weight functions h belonging to the set H h  of continuous functions approximated 
on an element by a biquadratic polynomial, and all g belonging to the set Gh of functions 
approximated on an element by a bilinear polynomial and continuous in the x2 direction, and Sc 
and S- as arbitrary truncated homogeneous solutions at each end of the duct. 

The number and size of the elements, as well as the choice of quadratic elements for the 
functions p and h are based on the work of Eversman and Baumeister in solving the second-order 
equation governing non-sheared flow.’ This work has shown that biquadratic approximations 
for acoustic density are necessary to achieve an accurate representation for acoustics problems 
with a manageable number of degrees of freedom. The initial use of bilinear elements for the 
function d is suggested by the form of equation (7). The first set of brackets in this equation 
contains terms essentially requiring d to be equal to derivatives of p up to first order. Thus, if p is 
approximated by a quadratic function, its first derivatives are approximated by linear functions, 
thus suggesting that only a linear approximation might be needed for the function d. The second 
set of brackets in equation (7), however, contains terms, which by the same rationalization suggest 
that d be linear in the x1 direction and, perhaps quadratic in the x2 direction; yet, this analysis is 
complicated by the fact that the weight function g will be approximated with the same approx- 
imation chosen for the function d. This suggests performing some numerical experiments to 
investigate appropriate orders of approximations for the solution functions and weight functions. 

REFINING THE FINITE ELEMENT SOLUTION 

To facilitate the investigation of some numerical aspects of the approximate forced problem, some 
nomenclature is needed concerning the eigenvalues in the representation of the general solution 
to the unforced problem for an unlined hard-walled duct. Eigenvalues with non-zero imaginary 
parts are related to what are called cut-off eigenmodes, since the amplitude of the homogeneous 
solution corresponding to a cut-off eigenmode decays as the mode propagates in the duct axial 
direction, x2. Terms corresponding to eigenvalues having zero imaginary parts are related to 
what are called cut-on eigenmodes, since the amplitude of the homogeneous solution does not 
decay appreciably as a function of the axial direction. 

Now the forced problem is addressed. To validate the computer code and to investigate the 
validity of the numerical technique, the results of some check cases are presented. Consider again 
the duct domain and the attached co-ordinate system shown in Figure 2. A cut-on mode, which 
propagates downstream, is launched into the upstream end of the duct. This is accomplished via 
the boundary condition at this end by requiring the solution at the end to match the form of the 
general homogeneous solution at that end, plus a term for the launched mode. The acoustic 
forcing terms are set to zero. The finite element problem is formed and solved using a standard 
‘frontal’ solution technique.” A solution of problem (10) is shown as a contour plot of acoustic 
density in Figure 3 and as a 3D plot of acoustic density plotted in the vertical direction as a 
function of position in the duct, (.xl, x2), in Figure 4. The centreline of the duct, and the duct wall, 
are shown on the plots to orient the position of the duct with respect to the axis system shown. 

Figures 3 and 4 are the results of launching a cut-on mode into one end of the duct. Since the 
mode is cut-on, it should propagate through the duct without decay, maintaining its shape 
throughout the length of the duct. This indeed is the case, as evidenced by the constant shape in 
Figure 4 and the straight constant pressure lines in the pressure contour plot. Figure 5 contains 
a 3D plot of the function d plotted vertically on the duct domain for this launched cut-on mode. 
Next, a mode that is cut-off is launched into the duct, resulting in Figure 6,  which represents 3D 
plots of acoustic density and the function d ,  respectively. A cut-off mode should maintain 
a constant shape but should decay in magnitude as it travels down the duct. This again is the case 
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Figure 3. Acoustic density amplitude lines for a cut-on mode launched into the upstream end of the duct, with sheared 
flow near the wall 

Figure 4. Acoustic density amplitude as a function of position in the duct for a cut-on mode launched into the upstream 
end of the duct, with sheared flow near the wall 

Figure 5. Amplitude of the function d as a function of position in the duct for a cut-on mode launched into the upstream 
end of the duct. with sheared Row near the wall 
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Figure 6. Acoustic density amplitude and amplitude of the function d as a function of position in the duct, for a cut-off 
mode launched into the upstream end of the duct, with sheared flow near the wall, using four elements across the region of 

sheared flow, and bilinear approximation for d 

as evidenced by the figures, however, the periodic oscillation appearing as bumps on the pressure 
plot suggests that numerical errors might be present in the solution. Also the plot of the function 
d shows that it does not decay down the duct, as one might expect. 

Figures 3-6 were calculated using a finite element mesh having 21 elements in the axial 
direction and 12 elements in the radial direction, with four elements across the boundary layer. 
Figure 7 shows the effect of refining the mesh to a 21 x 18 grid with eight elements across the 
boundary layer. The pressure plot is now smooth, and the plot of the function d shows decay 
axially but indicates numerical error. This improvement with mesh refinement suggests that d is 
not being approximated accurately enough for the problem as posed in equation (10). To improve 
the accuracy of the function d, the finite element bilinear polynomial approximation of d is 
replaced by a more accurate biquadratic polynomial approximation. Thus, the refined mesh case 
(21 x 18) is run using biquadratic quadrilateral elements for both acoustic density and the 
function d ,  resulting in Figure 8. Although these results look better, the need for the high-order 
approximation of the function d is somewhat perplexing, especially in light of the large numerical 
error evidenced in the 3D plot of d, Figure 7, for a linear approximation. 

Let us examine the weak problem of equation (9) as applied to the mode-launching check cases. 
The acoustic forcing terms are zero. Since the weak problem must hold for any h and y in the 
specified weight function spaces, choose g=O and h to be a function which is zero on the 
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Figure 7. Same case as Figure 6, with eight elements across the region of sheared flow and a bilinear approximation ford 

boundary and non-zero over some interior region Clint. Then equation (9) becomes 

dp ah 
- M 2 ) - -  

8x2 8x2 

+ik,M (:c2 - h - p -  ::J -dh ] x ldx ldx2=0  

For the approximate problem (and the exact problem), p is required to be continuous throughout 
the problem domain, but derivatives may or may not be continuous across element boundaries. 
The above equation then requires the term dh to be equal to terms which collectively can be 
discontinuous across element boundaries. Now, the previous numerical results and the physical 
nature of the problem both indicate that the solution to the exact problem should yield a smooth 
function (continuous with continuous derivatives) for the acoustic density p. However, the final 
form of the approximate problem, resulting from integration by parts to form the weak problem, 
does not force continuity of derivatives of p across element boundaries. Thus, numerical error in 
approximating the exact solution p can produce an approximate solution which has discontinu- 
ous derivatives at  the element boundaries. Requiring d to be continuous across element bound- 
aries may result in a solution for d which attempts to approximate the terms which are 
discontinuous due to approximation error. This preceeding argument is obviously not a rigorous 
error analysis of the approximate problem; however, it does suggest modifying the weak problem to 
allow d to be discontinuous in both the x1 and x2 directions. Thus, the approximate solution space 
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Figure 8. Same case as Figure 6,  with eight elements across the region of sheared flow and a biquadratic 
approximation for d 

Dh is replaced by a space D; which will be defined to be the set of all bilinear finite element 
approximate functions which may be (but are not required to be) discontinuous at element 
boundaries. This approximate equation will generally produce a non-square matrix problem to 
be solved. This is due to the asymmetry in the approximation spaces ford and g; that is, d belongs 
to the set D; , the class of functions which may be discontinuous in all directions, but g belongs to 
the set Gh,  the class of functions which are continuous in the axial direction. This rectangular 
system of algebraic equations, if carefully posed, can be solved by a least-squares methods. As an 
alternative to using a least-squares method, the problem can be solved for all g belonging to 
D; instead of Gh. This produces a square matrix which can be solved by standrd 'frontal' 
techniques.' It can be shown that if a solution to this alternate square matrix problem exists, 
then it is also a solution to the problem which produced the rectangular matrix. A solution to this 
symmetrical (square matrix) approximate problem (d E D; , g ED; ) for the cut-off mode launch 
case is shown in Figure 9. The finite element mesh used is the unrefined mesh of 21 elements 
axially and 12 elements radially, with four elements across the sheared flow, and the function d is 
approximated on each element by the less accurate bilinear polynomials. It is apparent that this 
modified approximate problem gives a smooth solution for the mode-launching check cases, 
using fewer degrees of freedom, but it is accomplished in a somewhat less straightforward manner. 
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Figure 9. Same case as Figure 6, but using the modified numerical method allowing d to be discontinuous at the element 
boundaries, with four elements across the region of sheared flow and a bilinear approximation for d 

PROPELLER RESULTS 

Finally, we are prepared to solve the forced duct problem for a typical propeller distribution. 
Acoustic sources representing a two bladed propeller are placed in a duct containing uniform 
flow of M = 0.5 Mach number (no shear) with k;, = 4.0 (having one cut-on mode). The propeller 
model is a Guten-type which represents the propeller by rotating acoustic sources and doub- 
l e t ~ . ~ . ~  The solution method uses the new formulation with symmetrical function spaces, d and 
g both belonging to D; for the approximate problem. The acoustic density p is approximated on 
an element by biquadratic polynomials, and d is approximated by bilinear polynomials with 
discontinuities allowed across element boundaries. These results are presented in Figures 10 and 
1 1 for the fundamental mode, m = 2. This same problem is solved for a sheared flow in the form of 
a linear boundary layer profile in the outer 20% of the duct ( M  = 0.5 at x1 = 0.8, varying linearly 
to M=O at the wall). These results are presented in Figures 12 and 13. It can be seen that the 
major effect of the sheared flow is to reduce the acoustic pressure significantly in the area 
upstream of the propeller, while having little effect on the acoustic pressure downstream. This is in 
accord with the expectation that the slower flow near the wall should refract upstream-travelling 
waves away from the wall, and should refract downstream-travelling waves toward the wall. 

Then this solution is compared with the results calculated using a different method developed 
by Eversman’ to solve the sheared flow acoustic problem in a duct. This method involves 
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M = .5 . 

Figure 10. Acoustic density amplitude lines for the fundamental tone of a two-bladed propeller extending to half the duct 
radius, with uniform flow and one duct mode cut-on 

Figure 11. Acoustic density amplitude as a function of position in the duct for the fundamental tone of a two-bladed 
propeller extending to half the duct radius, with uniform flow and one duct mode cut-on 

dividing the region containing sheared flow into annular regions in which the flow Mach number 
can be assumed to be constant. Mach number can vary from region to region in the radial 
direction to approximate the sheared flow profile. In the limit, as the number of annular divisions 
becomes large, this stepwise approximation of the flow profile approaches the continuous profle. 
Since the Mach number is constant in each region, the second-order acoustic wave equation for 
non-sheared flow holds on the interior of the region. This equation is readily solved on each 
annular region using an existing finite element method for the second-order equation. The physics 
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M = .5 

Figure 12. Acoustic density amplitude lines for the fundamental tone of a two-bladed propeller extending to half the duct 
radius, with sheared flow near the duct wall and one duct mode cut-on 

Figure 13. Acoustic density amplitude as a funclion of position in the duct for the fundamental tone of a two-bladed 
propeller extending to half the duct radius, with sheared flow near the duct wall and one duct mode cut-on 

of the situation gives boundary conditions in terms of the jump in Mach number across the 
annular region interfaces. These boundary conditions result from the requirement of continuity of 
particle displacement across the boundary between regions of different Mach numbers. Using this 
method to solve the identical propeller acoustic problem above gives the results shown in Figures 
14 and 15. This solution was calculated using biquadratic quadrilateral elements to approximate 
acoustic pressure, with the same finite element mesh of 21 elements axially and 12 elements 
radially. The propeller model used was slightly different from that used in a previous publication 
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Figure 14. Results from stepwise approximation of sheared flow, showing acoustic density amplitude lines for the 
fundamental tone of a two-bladed propeller extending to half the duct radius, with sheared flow near the duct wall and one 

duct mode cut-on 

M = . 5  

.INE 

Figure 15. Results from stepwise approximation of sheared flow, showing acoustic density amplitude as a function of 
position in the duct for the fundamental tone of a two-bladed propeller extending to half the duct radius,with sheared flow 

near the duct wall and one duct mode cut-on 

of the authors. The agreement between these results and the previous solution using the methods 
of this paper validate both the numerical methods for solving the acoustic field of a propeller in 
sheared flow in a circular duct. 

CONCLUSIONS 

The main advantage of the finite element formulation presented here for solving the third-order 
convected acoustic wave equation for sheared flow is that it is an extension of a successful 
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formulation of the second-order equation for unsheared flow. Decomposing the third-order 
sheared flow equation into a second-order and a first-order equation, choosing nine-noded 
biquadratic elements with continuity across the domain to approximate the acoustic density (the 
same elements used with unsheared flow) and choosing four-noded discontinuous bilinear 
elements to approximate the sheared flow artificial variable gives a finite element formulation 
similar to that used for unsheared flow. This allows the application of the extensive prior 
experience and knowledge of the type and number of elements required to represent accurately 
the acoustic density, or pressure, in convected flow situations. The numerical method is validated 
by numerous numerical experiments and by comparison with an alternate formulation which 
relies on a piecewise constant representation of the flow velocity profile to reduce the problem to 
second order. While a mathematical verification of the weak and approximate problems is 
desirable, the numerical validation is sufficient to demonstrate the validity of the formulation. 
A rigorous mathematical analysis is left for future work. 

REFERENCES 

1. W. Eversman and K. J. Baumeister, ‘Modeling of wind tunnel wall effects on the radiation characteristics of acoustic 

2. W. Eversman, ‘The effect of the wind tunnel wall boundary layer on the acoustic testing of propellers’, AIAA 

3. K. J. Baumeister and W. Eversman, ‘Modeling of wind tunnel wall absorption on the acoustic radiation character- 

4. W. Mohring, ‘Uber Shallwellen in Scherstronmungen’, Fortshritte der Akustik, DAGA 76, VDI, Dusseldorf, 1976, 

5. W. Eversman and J. E. Steck, ‘Finite element modelling of acoustic singularities with application to near and far field 

6. L. J. Gutin, ‘On the sound field of a rotating propeller’, NACA TM 1195, 1948. 
7. E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements-An Introduction, Vol. I ,  Prentice-Hall, Englewood Cliffs, 

8. J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, Wiley, New York, 1976, 

9. P. M. Morse, Vibration and Sound, McGraw-Hill, New York, 1948. 

sources’, AIAA Paper 84-2364, October 1984. 

Aeroacoustics Conference, San Antonio, TX, April 1989. 

istics of propellers’, AIAA Paper 86-1876, July 1986. 

pp. 543-546. 

propeller noise’, J .  Aircraft, 23(4), 275-282 (1986). 

NJ, 1981. 

pp. 89-144. 

10. P. M. Morse and U. Ingard, Theoretical Acousrics, McGraw-Hill, New York, 1968. 
1 1 .  R. J. Astley and W. Eversman, ‘A finite element formulation of the eigenvalue problem in lined ducts with flow’, 1. 

12. B. M. Irons, ‘A frontal solution program for finite element analysis’, Int. j .  numer. methods eng., 2 ,  5-32 (1970). 
13. R. J. Astley and W. Eversman, ‘Acoustic transmission in non-uniform ducts with mean flow. Part 11. The finite element 

14. J. W. S .  Rayleigh, The Theory ofsound, Dover, New York, 1945. 

Sound Vib., 65(1), 61-74 (1979). 

method‘, J. Sound Vib., 74(1), 103-121 (1981). 


